Понятия со словосочетанием «функция распределения»

Фу́нкция распределе́ния в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное х, где х — произвольное действительное число. При соблюдении известных условий (см. ниже) полностью определяет случайную величину.
Выборочная (эмпири́ческая) фу́нкция распределе́ния в математической статистике — это приближение теоретической функции распределения, построенное с помощью выборки из него.

Связанные понятия

Сходи́мость по распределе́нию в теории вероятностей — вид сходимости случайных величин.
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
Важнейшими с точки зрения приложений характеристических функций к выводу асимптотических формул теории вероятностей являются две предельные теоремы — прямая и обратная. Эти теоремы устанавливают, что соответствие, существующее между функциями распределения и характеристическими функциями, не только взаимно однозначно, но и непрерывно.

Подробнее: Прямая и обратная предельная теорема
Ме́тод обра́тного преобразова́ния (Преобразование Н. В. Смирнова) — способ генерации случайных величин с заданной функцией распределения, путём модификации работы генератора равномерно распределённых чисел.
Ковариацио́нная ма́трица (или ма́трица ковариа́ций) в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.
Характеристи́ческая фу́нкция случа́йной величины́ — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости (сходимости по распределению). В теорию характеристических функций внесли большой вклад Ю.В. Линник, И.В. Островский, С.Р. Рао, Б. Рамачандран.
Распределение вероятностей — это закон, описывающий область значений случайной величины и вероятности их исхода (появления).
В теории вероятностей случайная величина имеет дискретное равномерное распределение, если она принимает конечное число значений с равными вероятностями.

Подробнее: Дискретное равномерное распределение
Количество степеней свободы — это количество значений в итоговом вычислении статистики, способных варьироваться. Иными словами, количество степеней свободы показывает размерность вектора из случайных величин, количество «свободных» величин, необходимых для того, чтобы полностью определить вектор.
Усло́вное распределе́ние в теории вероятностей — это распределение случайной величины при условии, что другая случайная величина принимает определённое значение.
Теорема Хольмгрена — теорема о единственности решения задачи Коши для дифференциального уравнения с частными производными в случае аналитичности коэффициентов дифференциального оператора.
Коэффицие́нт асимметри́и в теории вероятностей — величина, характеризующая асимметрию распределения данной случайной величины.
Условное математическое ожидание в теории вероятностей — это среднее значение случайной величины относительно условного распределения.
Логарифмическое распределение в теории вероятностей — класс дискретных распределений. Логарифмическое распределение используется в различных приложениях, включая математическую генетику и физику.
Квантовая статистическая механика – статистическая механика, применяемая к квантовомеханическим системам. Для перехода от классической статистической механики к квантовой предположение классической статистической механики о том, что все допустимые области фазового пространства можно считать равновероятными, заменяется предположением, что все допустимые состояния имеют равные вероятности. Математически это означает, что все интегралы по фазовому пространству заменяются суммами по всем собственным...
Теоре́ма Лебе́га о мажори́руемой сходи́мости в функциональном анализе, теории вероятностей и смежных дисциплинах — это теорема, утверждающая, что если сходящаяся почти всюду последовательность измеримых функций может быть ограничена по модулю сверху интегрируемой функцией, то все члены последовательности, а также предельная функция тоже интегрируемы. Более того, интеграл последовательности сходится к интегралу её предела.
Мультиномиа́льное (полиномиа́льное) распределе́ние в теории вероятностей — это обобщение биномиального распределения на случай n>1 независимых испытаний случайного эксперимента с k>2 возможными исходами.
Функция концентрации (англ. concentration function) в теории вероятностей — одна из характеристик случайной величины. Функции концентрации используются в ряде задач теории вероятностей, в частности, при исследовании свойств свёрток распределений и предельных свойств сумм независимых случайных величин.
Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Логарифмический признак сходимости — признак сходимости числовых рядов с положительными членами.
Теорема об огибающей (англ. envelope theorem) — результат о дифференцируемости целевой функции в оптимизационных задачах с параметром. Теорема гласит, что при варьировании значения параметра, изменение целевой функции (в определённом смысле) не обусловлено изменением оптимума. Теорема важна для сравнительной статики в оптимизационных моделях.
Нера́венство Ма́ркова в теории вероятностей даёт оценку вероятности, что случайная величина превзойдёт по модулю фиксированную положительную константу, в терминах её математического ожидания. Хотя получаемая оценка обычно груба, она позволяет получить определённое представление о распределении, когда последнее не известно явным образом.
Кванти́ли распределе́ния хи-квадра́т — числовые характеристики, широко используемые в задачах математической статистики таких как построение доверительных интервалов, проверка статистических гипотез и непараметрическое оценивание.
Сходи́мость по ме́ре (по вероя́тности) в функциональном анализе, теории вероятностей и смежных дисциплинах — это вид сходимости измеримых функций (случайных величин), заданных на пространстве с мерой (вероятностном пространстве).
Неравенство Берри — Эссеена — неравенство, позволяющее оценить скорость сходимости суммы независимых случайных величин к случайной величине с нормальным распределением. Сам факт подобной сходимости носит в теории вероятностей название центральной предельной теоремы. Это неравенство было независимо выведено Эндрю Берри в 1941 и Карлом-Густавом Эссееном в 1942 годах.
Характеристический многочлен матрицы — многочлен, определяющий её собственные значения.
Гиперболические уравнения — класс дифференциальных уравнений в частных производных. Характеризуются тем, что задача Коши с начальными данными, заданными на нехарактеристической поверхности, однозначно разрешима.
Ковариа́ция (корреляционный момент, ковариационный момент) — в теории вероятностей и математической статистике мера линейной зависимости двух случайных величин.
Уравнение эйконала (от др.-греч. εἰκών — изображение) — нелинейное дифференциальное уравнение в частных производных, встречающееся в задачах распространения волн, когда волновое уравнение аппроксимируется с помощью квазиклассического приближения.
Теорема об обратной функции даёт достаточные условия для существования обратной функции в окрестности точки через производные от самой функции.
Эллиптические уравнения — класс дифференциальных уравнений в частных производных, описывающих стационарные процессы.

Подробнее: Эллиптическое уравнение
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом (или собственным значением) линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная...
Теорема о разностях — теорема, связывающая понятия производной и прямой конечной разности высших порядков для степенной функции натурального показателя степени.
Теорема Пайерлса — теорема квантовой статистической физики. Сформулирована и доказана Рудольфом Пайерлсом в 1930 году.
Коэффицие́нт эксце́сса (коэффициент островершинности) в теории вероятностей — мера остроты пика распределения случайной величины.
В математике (общей алгебре) многочлен от нескольких переменных над полем называется гармоническим, если лапласиан этого многочлена равен нулю.

Подробнее: Гармонический многочлен
Те́нзор эне́ргии-и́мпульса (ТЭИ) — симметричный тензор второго ранга (валентности), описывающий плотность и поток энергии и импульса полей материи и определяющий взаимодействие этих полей с гравитационным полем.
Параболические уравнения — класс дифференциальных уравнений в частных производных. Один из видов уравнений, описывающих нестационарные процессы.

Подробнее: Параболическое уравнение
В статистической термодинамике энтропия Цаллиса — обобщение стандартной энтропии Больцмана—Гиббса, предложенное Константино Цаллисом (Constantino Tsallis) в 1988 г. для случая неэкстенсивных (неаддитивных) систем. Его гипотеза базируется на предположении, что сильное взаимодействие в термодинамически аномальной системе приводит к новым степеням свободы, к совершенно иной статистической физике небольцмановского типа.
Теорема Пуанкаре о векторном поле (также известна как теорема Пуанкаре — Хопфа и теорема об индексе) — классическая теорема дифференциальной топологии и теории динамических систем;
В статистике, дельта-методом называется результат, описывающий вероятностное распределение функции от асимптотически нормальной статистической оценки при известной асимптотической дисперсии этой оценки.

Подробнее: Дельта-метод
Асимптоти́чески норма́льная оце́нка — в математической статистике оценка, распределение которой стремится к нормальному при увеличении размера выборки.
Информационное неравенство (математическая статистика) — неравенство для несмещённой оценки с локально минимальной дисперсией, задающее нижнюю границу для величины дисперсии этой оценки. Играет важную роль в теории асимптотически эффективных оценок.
Моме́нт случа́йной величины́ — числовая характеристика распределения данной случайной величины.
Слабая сходимость в функциональном анализе — вид сходимости в топологических векторных пространствах.
Разложение Риччи — это разложение тензора кривизны Римана на неприводимые относительно ортогональной группы тензорные части.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я